skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Johnson, Craig L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this work, the phenomenon of strain induced by a mismatch in thermal expansion coefficients between a thin film and its substrate is harnessed in a new context, replacing the canonical planar support with a three-dimensional (3-D), nanoconfining scaffold in which we embed a material of interest. In this manner, we demonstrate a general approach to exert a continuously tunable, triaxial, tensile strain, defying the Poisson ratio of the embedded material and achieving the exotic condition of “negative pressure.” This approach is hypothetically generalizable to materials of low modulus and high thermal expansion coefficient, and we use it here to achieve negative pressure in perovskite-phase CsPbI3embedded within the cylindrical pores of anodic aluminum oxide membranes. Through controlled thermal hysteresis, the perovskite crystal structure can be continuously tuned toward higher symmetry when confined in a scaffold with pore size <40 nm, in contrast with the symmetry-reducing action of any other mechanical perturbation. We use this effect to control the octahedral rotation angle that is critical to the remarkable photovoltaic attributes of halide perovskites. Under hundreds of megapascals of apparent negative pressure, the bandgap tunability is observed to follow the same quantitative trend observed for hydrostatic positive pressure, exploring the negative pressure region and demonstrating the relative dominance of bond stretching effects over average octahedral rotation angle on electronic structure. This study reveals and quantifies the structural and electronic consequences of 3D tensile strain present by design and provides a framework for understanding adventitious strain present in all nanocomposite materials. 
    more » « less
    Free, publicly-accessible full text available November 12, 2025